On the radical of cluster tilted algebras
نویسندگان
چکیده
We determine the minimal lower bound n, with $$n \geqslant 1$$ , where n-th power of radical module category a representation-finite cluster tilted algebra vanishes. give such in terms number vertices underline quiver. Consequently, we get nilpotency index for self-injective algebras. also study non-zero composition m, $$m 2$$ irreducible morphisms between indecomposable modules algebras lying $$(m\,{+}\,1)$$ -th their category.
منابع مشابه
Cluster-tilted Algebras
We introduce a new class of algebras, which we call cluster-tilted. They are by definition the endomorphism algebras of tilting objects in a cluster category. We show that their representation theory is very close to the representation theory of hereditary algebras. As an application of this, we prove a generalised version of so-called APR-tilting.
متن کاملFrom Iterated Tilted Algebras to Cluster-tilted Algebras
In this paper the relationship between iterated tilted algebras and cluster-tilted algebras and relation-extensions is studied. In the Dynkin case, it is shown that the relationship is very strong and combinatorial.
متن کاملOn Tilting Modules over Cluster-tilted Algebras
In this paper, we show that the tilting modules over a clustertilted algebra A lift to tilting objects in the associated cluster category CH . As a first application, we describe the induced exchange relation for tilting Amodules arising from the exchange relation for tilting object in CH . As a second application, we exhibit tilting A-modules having cluster-tilted endomorphism algebras. Cluste...
متن کاملCluster-tilted algebras and slices
We give a criterion allowing to verify whether or not two tilted algebras have the same relation-extension (thus correspond to the same cluster-tilted algebra). This criterion is in terms of a combinatorial configuration in the Auslander-Reiten quiver of the cluster-tilted algebra, which we call local slice.
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European journal of mathematics
سال: 2022
ISSN: ['2199-675X', '2199-6768']
DOI: https://doi.org/10.1007/s40879-021-00514-4